论文标题
2+1尺寸的晶格Qed的汉密尔顿限制
Hamiltonian limit of lattice QED in 2+1 dimensions
论文作者
论文摘要
可以通过推断各向异性晶格计算的结果,即使用具有不同时间和空间晶格间距($ a_t \ neq a_s $)的晶格动作的计算来找到晶格计理论的限制,即使用晶格动作,以$ a_t \ to $ a_t \ to $ a_t \ to $ a_t \ 0 $。在这项工作中,我们介绍了对2+1个维度(QED3)的欧几里得$ U(1)$ u(1)$ u(1)$ u(1)限制的研究,该理论是在圆环晶格上正规化的。使用重新归一化的各向异性$ξ_r= a_t/a_s $,通过将$ξ_r\ \ 0 $发送到0 $,同时保持空间晶格间距不变,从而找到限制。我们以$ 3 $不同的方式计算$ξ_r$:同时使用``正常人''和``'''''''''''''static Quark电位,以及量规场的梯度流量演变。后一种方法将与将量子计算与经典蒙特卡洛计算相结合的未来研究特别重要,这需要在哈密顿和拉格朗日形式主义中获得的晶格结果匹配。
The Hamiltonian limit of lattice gauge theories can be found by extrapolating the results of anisotropic lattice computations, i.e., computations using lattice actions with different temporal and spatial lattice spacings ($a_t\neq a_s$), to the limit of $a_t\to 0$. In this work, we present a study of this Hamiltonian limit for a Euclidean $U(1)$ gauge theory in 2+1 dimensions (QED3), regularized on a toroidal lattice. The limit is found using the renormalized anisotropy $ξ_R=a_t/a_s$, by sending $ξ_R \to 0$ while keeping the spatial lattice spacing constant. We compute $ξ_R$ in $3$ different ways: using both the ``normal'' and the ``sideways'' static quark potential, as well as the gradient flow evolution of gauge fields. The latter approach will be particularly relevant for future investigations of combining quantum computations with classical Monte Carlo computations, which requires the matching of lattice results obtained in the Hamiltonian and Lagrangian formalisms.