论文标题
生物 - 胶体缝线液滴的干燥:进步,应用和观点
Drying of Bio-colloidal Sessile Droplets: Advances, Applications, and Perspectives
论文作者
论文摘要
在过去的几十年中,包括被动系统(例如DNA和蛋白质)以及包括细菌和藻类的活性微生物系统的生物学液滴干燥,包括被动系统(例如DNA和蛋白质)以及活跃的微生物系统。当生物胶体经历干燥时,出现了不同的形态模式,在一系列生物医学应用中具有巨大潜力,跨越生物感应,医学诊断,药物输送和抗菌素耐药性。这篇综述介绍了对固体底物干燥的生物胶体液滴干燥的全面概述,重点是在过去十年中的实验进度。我们提供了生物胶体的相关特性的摘要,并将其组成(组成颗粒,溶剂和浓度)与由于干燥而产生的模式联系起来。我们研究了被动生物胶体(DNA,球状,纤维和复合蛋白,血浆,血清,血清,血液,尿液,泪水,唾液)产生的干燥模式。本文强调了形态学模式如何受到生物实体的性质和溶剂,微观和全球环境条件的影响。与健康对照样品的干燥液滴相比,新兴模式与初始液滴组合物之间的相关性可检测潜在的临床异常,从而提供诊断性蓝图。还提出了与COVID-19有关的生物模拟和唾液干液滴中模式形成的最新实验研究。最后,我们总结了生物活性剂在干燥过程中的作用,包括在干燥过程中细菌和藻类。综述以基于干燥液滴的下一代研究和应用的角度结论,从而使潜在的创新和工具能够研究这种令人兴奋的物理学,生物学,数据科学和机器学习的界面。
Drying of biologically-relevant sessile droplets, including passive systems (like DNA and proteins), as well as active microbial systems comprising bacteria and algae, have garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo drying, with significant potential in a range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the relevant properties of bio-colloids and link their composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We examined the drying patterns generated by passive bio-colloids (DNA, globular, fibrous, and composite proteins, plasma, serum, blood, urine, tears, saliva). This article highlights how morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions. Correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a diagnostic blueprint. Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets, relevant to COVID-19 are also presented. Finally, we summarize the role of biologically active agents in drying process, including bacteria and algae during the drying process. The review concludes with a perspective on the next generation of research and applications based on drying droplets, enabling potential innovations and tools to study this exciting interface of physics, biology, data sciences, and machine learning.