论文标题
在非常冷的晶格模拟中翻译拓扑优势
Translating topological benefits in very cold lattice simulations
论文作者
论文摘要
主场模拟提供了一种晶格QCD的方法,在该方法中,对少数大容量量规配置进行了计算。后者对于由于非常细的晶格间距而冻结全球拓扑电荷的模拟是有利的,因为这对可观察到的效果被时空体积抑制了。在这里,我们利用最近开发的稳定的威尔逊费米子(Wilson Fermions)来研究这种方法的变化,在这种方法中,只有时间方向($ t $)比传统计算大。与高我们的晶格几何形状相比,这具有有限的$ l $效果的优势,例如对于多 - 戴龙的可观察物,尽管与打开的边界条件相比,时间翻译不变性不会损失。 在此概念验证的贡献中,我们研究了使用非常冷的想法(即长期$ t $)晶格在细晶格间距上可观察到可观察到的物品。我们将标量 - 量表中的两点相关函数确定为有用的探针,并从$ n_f = 3 $ emembles出现了最高时间,最多$ t = 2304 $,$ a = 0.055 \,\ rm {fm {fm {fm} $。
Master-field simulations offer an approach to lattice QCD in which calculations are performed on a small number of large-volume gauge-field configurations. The latter is advantageous for simulations in which the global topological charge is frozen due to a very fine lattice spacing, as the effect of this on observables is suppressed by the spacetime volume. Here we make use of the recently developed Stabilised Wilson Fermions to investigate a variation of this approach in which only the temporal direction ($T$) is taken larger than in traditional calculations. As compared to a hyper-cubic lattice geometry, this has the advantage that finite-$L$ effects can be useful, e.g. for multi-hadron observables, while compared to open boundary conditions, time-translation invariance is not lost. In this proof-of-concept contribution, we study the idea of using very cold (i.e. long-$T$) lattices to topologically "defrost" observables at fine lattice spacing. We identify the scalar-scalar meson two-point correlation function as a useful probe and present first results from $N_f=3$ ensembles with time extents up to $T=2304$ and a lattice spacing of $a=0.055\,\rm{fm}$.