论文标题
1D抗铁磁旋转1海森贝格模型的对数负面性与单离子各向异性
Logarithmic negativity of the 1D antiferromagnetic spin-1 Heisenberg model with single-ion anisotropy
论文作者
论文摘要
我们研究有限链上的1D抗铁磁自旋1海森贝格XXX模型,外部磁场B和单离子各向异性D。我们确定最接近和非最终的邻居对数纠缠LN。我们的主要结果是在零温度和低温状态下,LN在最近和非最终的邻居(下一个和下一个最邻近)的位置消失。这种消失发生在B和D的临界值时。在B -d平面中讨论了LN行为的结果相图,包括分离线 - 以三个点结尾 - 能量密度在大小上是独立的。最后,提出并评论了有限温度在有限温度作为B和D的函数的结果。
We study the 1D antiferromagnetic spin-1 Heisenberg XXX model with external magnetic field B and single-ion anisotropy D on finite chains. We determine the nearest and non-nearest neighbor logarithmic entanglement LN. Our main result is the disappearance of LN both for nearest and non-nearest neighbor (next-nearest and next-next-nearest) sites at zero temperature and for low temperature states. Such disappearance occurs at a critical value of B and D. The resulting phase diagram for the behaviour of LN is discussed in the B - D plane, including a separating line - ending in a triple point - where the energy density is independent on the size. Finally, results for LN at finite temperature as a function of B and D are presented and commented.