论文标题

彩虹循环编号和EFX分配:(几乎)缩小差距

Rainbow Cycle Number and EFX Allocations: (Almost) Closing the Gap

论文作者

Jahan, Shayan Chashm, Seddighin, Masoud, Seyed-Javadi, Seyed-Mohammad, Sharifi, Mohammad

论文摘要

最近,一些关于不可分割商品公平分配的研究注意到纯粹的组合问题之间的联系,称为彩虹周期问题和公平的概念,称为$ \ efx $:假设参数$ d $的彩虹循环号(即$ \ $ \ $ \ rainbow(d)$ $o_ε(n^{\fracβ{β+1}}} \ log^{\fracγ{β+1}} n)$丢弃的商品数量\ cite {chaudhury2021improving}。 The best upper bound on $\rainbow(d)$ is improved in a series of works to $O(d^4)$ \cite{chaudhury2021improving}, $O(d^{2+o(1)})$ \cite{berendsohn2022fixed}, and finally to $O(d^2)$ \ cite {akrami2022}。\ footNote {我们参考了简介结束时的注释,以简短讨论\ cite {akrami20222}的结果。}。}另外,通过一个简单的观察,我们有$ \ rainbow(d)\ inω(d)$ \ cite {chaudrof,我们有$ \ rainbow(d) 在本文中,我们在极端组合学中介绍了另一个问题。对于参数$ \ ell $,我们定义彩虹路径学位,并用$ \ ece(\ ell)$表示。我们表明,$ \ ech(\ ell)$上的任何下限都会在$ \ rainbow(d)$上产生上限。接下来,我们证明$ \ ecech(\ ell)\ inω(\ ell^2/\ log n)$,它产生了ω(d \ log d)$的几乎紧密的上限(d \ log d)$。反过来,这证明了$(1-ε)$ - $ \ efx $分配带有$o_ε(\ sqrt {n \ log n})$丢弃的商品数量。此外,对于彩虹循环问题的特殊情况,每个部分的边缘形成排列,我们将上限提高到$ \ rainbow(d)\ leq 2d-4 $。我们利用$ \ ech(\ ell)$来实现此界限。 我们的猜想是$ \ ecech(\ ell)$的确切值是$ \ lfloor \ frac {\ ell^2} {2} {2} \ rfloor -1 $。我们提供一些支持此猜想的实验。假设这个猜想是正确的,我们有$ \ rainbow(d)\在θ(d)$中。

Recently, some studies on the fair allocation of indivisible goods notice a connection between a purely combinatorial problem called the Rainbow Cycle problem and a fairness notion known as $\efx$: assuming that the rainbow cycle number for parameter $d$ (i.e. $\rainbow(d)$) is $O(d^β\log^γd)$, we can find a $(1-ε)$-$\efx$ allocation with $O_ε(n^{\fracβ{β+1}}\log^{\fracγ{β+1}} n)$ number of discarded goods \cite{chaudhury2021improving}. The best upper bound on $\rainbow(d)$ is improved in a series of works to $O(d^4)$ \cite{chaudhury2021improving}, $O(d^{2+o(1)})$ \cite{berendsohn2022fixed}, and finally to $O(d^2)$ \cite{Akrami2022}.\footnote{We refer to the note at the end of the introduction for a short discussion on the result of \cite{Akrami2022}.} Also, via a simple observation, we have $\rainbow(d) \in Ω(d)$ \cite{chaudhury2021improving}. In this paper, we introduce another problem in extremal combinatorics. For a parameter $\ell$, we define the rainbow path degree and denote it by $\ech(\ell)$. We show that any lower bound on $\ech(\ell)$ yields an upper bound on $\rainbow(d)$. Next, we prove that $\ech(\ell) \in Ω(\ell^2/\log n)$ which yields an almost tight upper bound of $\rainbow(d) \in Ω(d \log d)$. This in turn proves the existence of $(1-ε)$-$\efx$ allocation with $O_ε(\sqrt{n \log n})$ number of discarded goods. In addition, for the special case of the Rainbow Cycle problem that the edges in each part form a permutation, we improve the upper bound to $\rainbow(d) \leq 2d-4$. We leverage $\ech(\ell)$ to achieve this bound. Our conjecture is that the exact value of $\ech(\ell) $ is $ \lfloor \frac{\ell^2}{2} \rfloor -1$. We provide some experiments that support this conjecture. Assuming this conjecture is correct, we have $\rainbow(d) \in Θ(d)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源