论文标题
使用整数序列分析对数学常数的猜想进行自动搜索
Automated Search for Conjectures on Mathematical Constants using Analysis of Integer Sequences
论文作者
论文摘要
涉及基本数学常数的公式对科学和数学的各个领域都有很大的影响,例如有助于实现常数的非理性证明。但是,这种公式的发现历史上仍然很少,经常被伟大的数学家(例如Ramanujan,Euler和Gauss)视为数学天才行为。为了自动化数学常数公式的最新努力,例如Ramanujan Machine项目,依赖于详尽的搜索。尽管有几个成功的发现,但详尽的搜索仍然受到可以涵盖的选项空间的限制,并且需要大量的计算资源。在这里,我们提出了一种根本不同的方法来搜索数学常数的猜想:通过整数序列的分析。我们介绍了列出的签名的符合分数的梅西批准(ESMA)算法,该算法基于Berlekamp-Massey算法,以识别代表数学常数的整数序列中的模式。 ESMA算法找到了$ e,e^2,tan(1)$的各种已知公式和贝塞尔函数值的比率。该算法进一步发现了这些常数的大量新猜想,有些提供了更简单的表示,而有些则提供了比相应的简单续次分数更快的数值收敛。除算法外,我们还提出了用于操纵持续分数的数学工具。这些连接使我们能够表征ESMA可以找到什么常数空间,并在某些情况下量化其算法优势。总的来说,这项工作继续在计算机算法增强数学直觉的发展中继续进行,以帮助揭示数学结构和加速数学研究。
Formulas involving fundamental mathematical constants had a great impact on various fields of science and mathematics, for example aiding in proofs of irrationality of constants. However, the discovery of such formulas has historically remained scarce, often perceived as an act of mathematical genius by great mathematicians such as Ramanujan, Euler, and Gauss. Recent efforts to automate the discovery of formulas for mathematical constants, such as the Ramanujan Machine project, relied on exhaustive search. Despite several successful discoveries, exhaustive search remains limited by the space of options that can be covered and by the need for vast amounts of computational resources. Here we propose a fundamentally different method to search for conjectures on mathematical constants: through analysis of integer sequences. We introduce the Enumerated Signed-continued-fraction Massey Approve (ESMA) algorithm, which builds on the Berlekamp-Massey algorithm to identify patterns in integer sequences that represent mathematical constants. The ESMA algorithm found various known formulas for $e, e^2, tan(1)$, and ratios of values of Bessel functions. The algorithm further discovered a large number of new conjectures for these constants, some providing simpler representations and some providing faster numerical convergence than the corresponding simple continued fractions. Along with the algorithm, we present mathematical tools for manipulating continued fractions. These connections enable us to characterize what space of constants can be found by ESMA and quantify its algorithmic advantage in certain scenarios. Altogether, this work continues in the development of augmenting mathematical intuition by computer algorithms, to help reveal mathematical structures and accelerate mathematical research.