论文标题
一致性(宇宙射线,中微子,伽马射线和无线电谱)。 I.银河非热发射的预测模型
CONGRuENTS (COsmic-ray, Neutrino, Gamma-ray and Radio Non-Thermal Spectra). I. A predictive model for galactic non-thermal emission
论文作者
论文摘要
宇宙射线产生的非热发射的总亮度和光谱形状取决于它们的星际环境,这种依赖性导致星系的块状特性之间的相关性 - 恒星形成速率,恒星质量,其他质量和其他 - 及其非热光谱。了解宇宙射线运输,损失和发射的物理机制是理解这些相关性的关键。在这里,在该系列的第一篇论文中,我们提出了一种新方法来计算星形星系的非热光谱,并描述一个开源软件包 - 宇宙射线,中微子,伽马射线,伽马射线和无线电非热光谱(一致性) - 实现了它。作为一项关键创新,我们的方法仅作为输入,仅作为银河系的有效半径,星形形成率,出色的质量和红移,所有数量易于用于大型星系样本,并且不需要昂贵的空间分辨的气体测量值。从这些输入中,我们为背景气体和辐射场得出了个体的逐级模型,宇宙射线通过该模型传播的个体,我们通过求解全部动力学方程来计算稳态的宇宙宇宙光谱和hADRONIC和LEPTONIC颗粒。我们调用用于宇宙射线传输的现代模型,并包括所有重要的排放和损失机制。在本文中,我们描述了该模型,并将其验证在附近的星形星系中测得的非热发射,这些星系跨越了四个数量级的恒星形成速率。
The total luminosity and spectral shape of the non-thermal emission produced by cosmic rays depends on their interstellar environment, a dependence that gives rise to correlations between galaxies' bulk properties -- star formation rate, stellar mass, and others -- and their non-thermal spectra. Understanding the physical mechanisms of cosmic ray transport, loss, and emission is key to understanding these correlations. Here, in the first paper of the series, we present a new method to compute the non-thermal spectra of star-forming galaxies, and describe an open-source software package -- COsmic-ray, Neutrino, Gamma-ray and Radio Non-Thermal Spectra (CONGRuENTS) -- that implements it. As a crucial innovation, our method requires as input only a galaxy's effective radius, star formation rate, stellar mass, and redshift, all quantities that are readily available for large samples of galaxies and do not require expensive, spatially resolved gas measurements. From these inputs we derive individual, galaxy-by-galaxy models for the background gas and radiation field through which cosmic rays propagate, from which we compute steady state cosmic ray spectra for hadronic and leptonic particles in both the galactic disc and halo by solving the full kinetic equation. We invoke modern models for cosmic ray transport and include all significant emission and loss mechanisms. In this paper we describe the model and validate it against non-thermal emission measured in nearby star-forming galaxies that span four orders of magnitude in star formation rate.