论文标题
多步多置载荷预测
Multistep Multiappliance Load Prediction
论文作者
论文摘要
表现出色的预测模型对于建议为节能消费者行为的推荐系统至关重要。但是,可靠,准确的预测取决于信息性特征和合适的模型设计,可在不同的家庭和设备之间进行良好和稳健的表现。此外,客户对准确的预测的不合理期望可能会使他们长期使用系统。在本文中,我们设计了一个三步的预测框架,以评估可预测性,工程功能和深度学习体系结构,以预测24小时的负载值。首先,我们的可预测性分析为期望管理提供了一种工具,以缓解客户的预期。其次,我们为建模过程设计了几个新天气,时间和设备相关的参数,并测试其对模型预测性能的贡献。第三,我们检查了六种深度学习技术,并将它们与树和支持矢量回归基准进行比较。我们基于来自四个不同地区(美国,英国,奥地利和加拿大)的四个数据集的设备级负载预测的强大而准确的模型,并具有相等的设备。经验结果表明,时间特征和天气指标的周期性编码以及长期任期内存(LSTM)模型提供了最佳性能。
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.