论文标题

在两部分图中不包括单跨匹配的未成年人

Excluding Single-Crossing Matching Minors in Bipartite Graphs

论文作者

Giannopoulou, Archontia C., Thilikos, Dimitrios M., Wiederrecht, Sebastian

论文摘要

\ noIndent通过英勇的开创性结果,计算$(0,1)$ - 矩阵的永久性是$ \#\ Mathsf {p} $ - 硬。 1913年,pólya问哪个$(0,1)$ - 矩阵$ a $可以更改一些迹象,以使$ a $的永久性等于由此产生的矩阵的决定因素。在1975年,Little显示这些矩阵正是两分图的双jaCencencency矩阵,不包括$ k_ {3,3} $作为\ {匹配的次要}。这是McCuaig,Robertson,Seymour和Thomas在1999年将其变成多项式时间算法。但是,在双分部分图中排除了一些匹配的未成年人之间的关系与永久性的易牵引力与$ k_ {3,3,3}的延伸范围超过$ k_ {3,3}。可以有效地计算相应$(0,1)$ - 矩阵的{永久}。在本文中,我们将上面的两个结果统一为单一的,更一般的结果,以单跨无限制图的著名结构定理的样式。我们确定了一类双方图,严格概括平面两分图和$ k_ {3,3} $,其中包括无限的许多非Pfaffian图。将此类的任何成员排除为匹配的未成年人都会产生一种结构,允许对永久性的有效评估。此外,我们证明了对永久性的评估保留$ \#\ MATHSF {p} $ - 在两部分图上很难将$ k_ {5,5} $作为匹配的未成年人。这为在匹配小型封闭类中计数完美匹配的问题建立了第一个计算下限。

\noindent By a seminal result of Valiant, computing the permanent of $(0,1)$-matrices is, in general, $\#\mathsf{P}$-hard. In 1913 Pólya asked for which $(0,1)$-matrices $A$ it is possible to change some signs such that the permanent of $A$ equals the determinant of the resulting matrix. In 1975, Little showed these matrices to be exactly the biadjacency matrices of bipartite graphs excluding $K_{3,3}$ as a \{matching minor}. This was turned into a polynomial time algorithm by McCuaig, Robertson, Seymour, and Thomas in 1999. However, the relation between the exclusion of some matching minor in a bipartite graph and the tractability of the permanent extends beyond $K_{3,3}.$ Recently it was shown that the exclusion of any planar bipartite graph as a matching minor yields a class of bipartite graphs on which the {permanent} of the corresponding $(0,1)$-matrices can be computed efficiently. In this paper we unify the two results above into a single, more general result in the style of the celebrated structure theorem for single-crossing-minor-free graphs. We identify a class of bipartite graphs strictly generalising planar bipartite graphs and $K_{3,3}$ which includes infinitely many non-Pfaffian graphs. The exclusion of any member of this class as a matching minor yields a structure that allows for the efficient evaluation of the permanent. Moreover, we show that the evaluation of the permanent remains $\#\mathsf{P}$-hard on bipartite graphs which exclude $K_{5,5}$ as a matching minor. This establishes a first computational lower bound for the problem of counting perfect matchings on matching minor closed classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源