论文标题
styletRF:风格化张力辐射场
StyleTRF: Stylizing Tensorial Radiance Fields
论文作者
论文摘要
最近,使用摄像头随便捕获的风格视图一代已经引起了很多关注。场景的几何形状和外观通常被捕获为先前工作中的神经点集或神经辐射场。图像样式化方法用于通过与结构捕获网络共同或迭代训练其网络来对捕获的外观进行样式化。最先进的SNERF方法以交替的方式训练NERF和样式化网络。这些方法具有较高的训练时间,需要关节优化。在这项工作中,我们介绍了StyletRF,这是一种紧凑的快速优化的策略,用于使用Tensorf进行风格化的视图生成。外观部分是使用使用Tensorf表示形式进行一些迭代的一些视图的稀疏定型先验进行微调的。因此,我们的方法有效地将样式适应性从视图捕获中解除,并且比以前的方法快得多。我们在用于此目的的几个场景上显示了最新的结果。
Stylized view generation of scenes captured casually using a camera has received much attention recently. The geometry and appearance of the scene are typically captured as neural point sets or neural radiance fields in the previous work. An image stylization method is used to stylize the captured appearance by training its network jointly or iteratively with the structure capture network. The state-of-the-art SNeRF method trains the NeRF and stylization network in an alternating manner. These methods have high training time and require joint optimization. In this work, we present StyleTRF, a compact, quick-to-optimize strategy for stylized view generation using TensoRF. The appearance part is fine-tuned using sparse stylized priors of a few views rendered using the TensoRF representation for a few iterations. Our method thus effectively decouples style-adaption from view capture and is much faster than the previous methods. We show state-of-the-art results on several scenes used for this purpose.