论文标题
理性中的单色商,产品和多项式总和
Monochromatic quotients, products and polynomial sums in the rationals
论文作者
论文摘要
令$ k,a \ in \ mathbb {n} $,让$ p_1,\ cdots,p_k \ in \ mathbb {q} [q} [n] $,零常数项。我们表明,对于$ \ mathbb {q} $的任何有限颜色,都有non-Zero $ x,y \ in \ mathbb {q} $,因此存在包含一组表单的颜色$ \ big \ {x,\ frac {x} {y^a},x+p_ {1}(y),\ cdots,x+p_ {k {k}(y)\ big \} $$,并且非零v,in \ Zero $ v,in \ n y Mathbb {Q} $ $$ \ big \ {v,v \ cdot {u^a},v+p_ {1}(u),\ cdots,v+p_ {k}(k}(u)\ big \}。$$
Let $k,a\in \mathbb{N}$ and let $p_1,\cdots,p_k\in \mathbb{Q}[n]$ with zero constant term. We show that for any finite coloring of $\mathbb{Q}$, there are non-zero $x,y\in \mathbb{Q}$ such that there exists a color which contains a set of the form $$\Big\{x,\frac{x}{y^a},x+p_{1}(y),\cdots,x+p_{k}(y)\Big\}$$ and there are non-zero $v,u\in \mathbb{Q}$ such that there exists a color which contains a set of the form $$\Big\{v,v\cdot {u^a},v+p_{1}(u),\cdots,v+p_{k}(u)\Big\}.$$