论文标题
$ c^0 $ - 传说中的限制和正面循环
$C^0$-limits of Legendrians and positive loops
论文作者
论文摘要
我们表明,如果Submanifold的图像平稳,则在同态形态下,在同质形态下的图像再次是Legendrian。在证明这一点时,我们表明,任何非legendrian submanifold的接触歧管都承认了一个正循环,并且我们提供了Rosen-Zhang的参数改进,结果是Chekanov-Hofer-shelukhin pseudo-norm的脱落,非律师的伪造。
We show that the image of a Legendrian submanifold under a homeomorphism that is the $C^0$-limit of a sequence of contactomorphisms is again Legendrian, if the image of the submanifold is smooth. In proving this, we show that any non-Legendrian submanifold of a contact manifold admits a positive loop and we provide a parametric refinement of the Rosen--Zhang result on the degeneracy of the Chekanov--Hofer--Shelukhin pseudo-norm for non-Legendrians.