论文标题
召回,扩展和多用式横词:快速准确的超细实体键入
Recall, Expand and Multi-Candidate Cross-Encode: Fast and Accurate Ultra-Fine Entity Typing
论文作者
论文摘要
在上下文中,Ultra-Fine实体键入(UFET)预测给定实体提及的非常自由形式的类型(例如总统,政治家)。最新的(SOTA)方法使用基于跨编码器(CE)的体系结构。 CE将提及(及其上下文)与每种类型相连,并将成对馈送到预验证的语言模型(PLM)中以评分其相关性。它在提及和类型之间带来了更深层次的互动,以达到更好的性能,但必须执行N(类型设置大小)向前传球来推断单个提及的类型。因此,当类型集很大时,CE的推断非常慢(例如,UFET n = 10k)。为此,我们建议以召回式滤波器方式执行实体打字。召回和扩展阶段修剪大型集合和生成K(K通常小于256),每次提及的最相关类型的候选者。在滤波器阶段,我们使用一个名为MCCE的新型模型同时编码并在一个正向传球中对这些K候选者进行评分,以获得最终类型的预测。我们研究了MCCE的不同变体和广泛的实验表明,我们的范式下的MCCE达到超细实体键入的SOTA性能,并且比跨编码器快数千倍。我们还发现,MCCE在细粒度(130种)和粗粒(9种类型)实体中非常有效。我们的代码可在\ url {https://github.com/modelscope/adaseq/tree/master/master/examples/mcce}获得。
Ultra-fine entity typing (UFET) predicts extremely free-formed types (e.g., president, politician) of a given entity mention (e.g., Joe Biden) in context. State-of-the-art (SOTA) methods use the cross-encoder (CE) based architecture. CE concatenates the mention (and its context) with each type and feeds the pairs into a pretrained language model (PLM) to score their relevance. It brings deeper interaction between mention and types to reach better performance but has to perform N (type set size) forward passes to infer types of a single mention. CE is therefore very slow in inference when the type set is large (e.g., N = 10k for UFET). To this end, we propose to perform entity typing in a recall-expand-filter manner. The recall and expand stages prune the large type set and generate K (K is typically less than 256) most relevant type candidates for each mention. At the filter stage, we use a novel model called MCCE to concurrently encode and score these K candidates in only one forward pass to obtain the final type prediction. We investigate different variants of MCCE and extensive experiments show that MCCE under our paradigm reaches SOTA performance on ultra-fine entity typing and is thousands of times faster than the cross-encoder. We also found MCCE is very effective in fine-grained (130 types) and coarse-grained (9 types) entity typing. Our code is available at \url{https://github.com/modelscope/AdaSeq/tree/master/examples/MCCE}.