论文标题
通过语义通信的对比度学习来解开可学习和可记住的数据
Disentangling Learnable and Memorizable Data via Contrastive Learning for Semantic Communications
论文作者
论文摘要
对于将来的6G应用程序(例如元评估)的运行,必须实现人为智能的本地无线网络。尽管如此,目前的沟通方案本质上是缺乏推理的重建过程。一种关键解决方案,可以使不断发展的无线通信与类似人类的对话进行,是语义通信。在本文中,提出了一个新颖的机器推理框架,以预处理和删除源数据,以使其具有语义准备。特别是,提出了一个新颖的对比学习框架,从而在数据上进行了实例和聚类歧视。这两个任务使数据点映射到语义上相似的内容元素之间的凝聚力和语义上不同内容元素的数据点之间的凝聚力。随后,形成的语义深簇根据其信心水平进行排名。具有最高置信度的深层语义群被认为可以学习,语义丰富的数据,即可用于在语义通信系统中构建语言的数据。考虑到最不自信的是随机,语义上的贫困和可记住的数据,必须经过经典的传播。我们的仿真结果在语义影响和极简主义方面展示了我们的对比学习方法的优越性。实际上,与香草语义通信系统相比,达到的语义表示的长度最小化了57.22%,从而实现了极简主义的语义表示。
Achieving artificially intelligent-native wireless networks is necessary for the operation of future 6G applications such as the metaverse. Nonetheless, current communication schemes are, at heart, a mere reconstruction process that lacks reasoning. One key solution that enables evolving wireless communication to a human-like conversation is semantic communications. In this paper, a novel machine reasoning framework is proposed to pre-process and disentangle source data so as to make it semantic-ready. In particular, a novel contrastive learning framework is proposed, whereby instance and cluster discrimination are performed on the data. These two tasks enable increasing the cohesiveness between data points mapping to semantically similar content elements and disentangling data points of semantically different content elements. Subsequently, the semantic deep clusters formed are ranked according to their level of confidence. Deep semantic clusters of highest confidence are considered learnable, semantic-rich data, i.e., data that can be used to build a language in a semantic communications system. The least confident ones are considered, random, semantic-poor, and memorizable data that must be transmitted classically. Our simulation results showcase the superiority of our contrastive learning approach in terms of semantic impact and minimalism. In fact, the length of the semantic representation achieved is minimized by 57.22% compared to vanilla semantic communication systems, thus achieving minimalist semantic representations.