论文标题

部分可观测时空混沌系统的无模型预测

Marginal-Certainty-aware Fair Ranking Algorithm

论文作者

Yang, Tao, Xu, Zhichao, Wang, Zhenduo, Tran, Anh, Ai, Qingyao

论文摘要

排名系统在现代互联网服务中无处不在,包括在线市场,社交媒体和搜索引擎。传统上,排名系统仅关注如何获得更好的相关性估计。当有相关性估计时,他们通常会采用以用户为中心的优化策略,在该策略中,通过根据项目的估计相关性对项目进行排序。但是,这种以用户为中心的优化忽略了项目提供商还从排名系统中获取实用程序的事实。现有研究中已经表明,这种以用户为中心的优化会给物品提供商带来很多不公平性,其次是不公平的机会和不公平的商品提供者的经济收益。 为了解决排名公平,已经提出了许多公平的排名方法。但是,正如我们在本文中所显示的那样,这些方法可能是次优的,因为它们直接依赖相关性估计而不意识到不确定性(即估计相关性的差异)。为了解决这种不确定性,我们提出了一种新颖的边缘性知名度 - 公平算法,名为McFair。 McFair共同优化了公平性和用户实用性,而相关性估计则以在线方式不断更新。 在McFair中,我们首先建立一个排名目标,其中包括不确定性,公平性和用户实用程序。然后,我们将排名目标的梯度直接用作排名得分。从理论上讲,我们证明了基于梯度的McFair对于上述排名目标是最佳的。从经验上讲,我们发现在半合成的数据集上,麦克菲尔具有有效和实用性,与最先进的公平排名方法相比,可以提供较高的性能。为了促进可重复性,我们发布代码https://github.com/taosheng-ty/wsdm22-mcfair。

Ranking systems are ubiquitous in modern Internet services, including online marketplaces, social media, and search engines. Traditionally, ranking systems only focus on how to get better relevance estimation. When relevance estimation is available, they usually adopt a user-centric optimization strategy where ranked lists are generated by sorting items according to their estimated relevance. However, such user-centric optimization ignores the fact that item providers also draw utility from ranking systems. It has been shown in existing research that such user-centric optimization will cause much unfairness to item providers, followed by unfair opportunities and unfair economic gains for item providers. To address ranking fairness, many fair ranking methods have been proposed. However, as we show in this paper, these methods could be suboptimal as they directly rely on the relevance estimation without being aware of the uncertainty (i.e., the variance of the estimated relevance). To address this uncertainty, we propose a novel Marginal-Certainty-aware Fair algorithm named MCFair. MCFair jointly optimizes fairness and user utility, while relevance estimation is constantly updated in an online manner. In MCFair, we first develop a ranking objective that includes uncertainty, fairness, and user utility. Then we directly use the gradient of the ranking objective as the ranking score. We theoretically prove that MCFair based on gradients is optimal for the aforementioned ranking objective. Empirically, we find that on semi-synthesized datasets, MCFair is effective and practical and can deliver superior performance compared to state-of-the-art fair ranking methods. To facilitate reproducibility, we release our code https://github.com/Taosheng-ty/WSDM22-MCFair.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源