论文标题
在非guassian模型上的许多相互作用方法的扩展
An Extension of Many-Interacting-Worlds Method on Non-Guassian Model
论文作者
论文摘要
关于量子理论是确定论还是不确定性的讨论持续了一个世纪。一种基于许多世界解释和de broglie-bohm力学的标准量子力学的新方法称为多种相互作用世界方法,这可以证明从确定性宇宙中证明概率的可能性。已证明,在和谐振动器的基础状态下,许多相互作用的世界方法成功。在本文中,我们将此方法扩展到一个维库仑电位,并构建相应的经验密度函数。我们还提供了密度函数收敛性的理论证明。我们对第一维库仑电位的数值模拟在第一个激发态中获得了标准量子力学的一致结果,并显示了许多相互作用世界方法的适用性。这项研究提供了将许多相互作用的方法扩展到非高斯量子系统的可能性。
Discussions about whether quantum theory is determinism or indeterminism has lasted for a century. A new approach to standard quantum mechanics called many-interacting-worlds method based on many-worlds interpretation and de Broglie-Bohm mechanics provided the possibility to demonstrate probability from deterministic universe.The many-interacting-worlds method has been proved successful in the ground state of harmonic oscillator. In this article we extend this method to one dimensional Coulomb potential and construct a corresponding empirical density function. We also provide a theoretical proof of the convergence of density function. Our numerical simulation of one dimensional Coulomb potential in the first excited state obtains the consistent result with standard quantum mechanics and shows the applicability of many-interacting-worlds method. This research provides the possibility to extend many-interacting-worlds method to non-Gaussian quantum systems.