论文标题
基于GAN的表格数据生成器,用于在近似查询处理中构造摘要:挑战和解决方案
GAN-based Tabular Data Generator for Constructing Synopsis in Approximate Query Processing: Challenges and Solutions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In data-driven systems, data exploration is imperative for making real-time decisions. However, big data is stored in massive databases that are difficult to retrieve. Approximate Query Processing (AQP) is a technique for providing approximate answers to aggregate queries based on a summary of the data (synopsis) that closely replicates the behavior of the actual data, which can be useful where an approximate answer to the queries would be acceptable in a fraction of the real execution time. This study explores the novel utilization of Generative Adversarial Networks (GANs) in the generation of tabular data that can be employed in AQP for synopsis construction. We thoroughly investigate the unique challenges posed by the synopsis construction process, including maintaining data distribution characteristics, handling bounded continuous and categorical data, and preserving semantic relationships and then introduce the advancement of tabular GAN architectures that overcome these challenges. Furthermore, we propose and validate a suite of statistical metrics tailored for assessing the reliability of the GAN-generated synopses. Our findings demonstrate that advanced GAN variations exhibit a promising capacity to generate high-fidelity synopses, potentially transforming the efficiency and effectiveness of AQP in data-driven systems.