论文标题

Calderón通过deponets的问题

The Calderón's problem via DeepONets

论文作者

Castro, Javier, Muñoz, Claudio, Valenzuela, Nicolás

论文摘要

我们考虑到Dirichlet到Neumann运算符,以及直接和逆Calderón的映射,出现在恢复平滑界限和正态的各向同性电导率的倒数问题中,该材料填充了空间中平稳的界面域。使用深度学习技术,我们证明了这些映射是由Deeponets,无限维度对应物的标准人工神经网络严格近似的。

We consider the Dirichlet-to-Neumann operator and the direct and inverse Calderón's mappings appearing in the Inverse Problem of recovering a smooth bounded and positive isotropic conductivity of a material filling a smooth bounded domain in space. Using deep learning techniques, we prove that these mappings are rigorously approximated by DeepONets, infinite-dimensional counterparts of standard artificial neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源