论文标题
建模实例相互作用,用于与神经高阶条件随机场进行联合信息提取
Modeling Instance Interactions for Joint Information Extraction with Neural High-Order Conditional Random Field
论文作者
论文摘要
关于联合信息提取(IE)的先前工作通常是通过表示增强,类型依赖性评分或全局解码来模拟实例(例如事件触发器,实体,角色,关系)交互。我们发现,以前的模型通常考虑一对实例的二进制类型依赖性评分,并利用本地搜索(例如梁搜索)来近似全局解决方案。为了更好地整合跨境相互作用,在这项工作中,我们引入了一个关节IE框架(CRFIE),该框架(CRFIE)将关节IE作为高阶条件随机场。具体而言,我们设计了二元因子和三元因子,以直接建模不仅在一对实例之间,而且在三重态之间建模相互作用。然后,这些因素用于共同预测所有实例的标签。为了解决精确高阶推断的棘手性问题,我们结合了一个高阶神经解码器,该解码器是从平均场差异推理方法中展出的,该方法可以实现一致的学习和推理。实验结果表明,与基准和先前的工作相比,我们的方法在三个IE任务上取得了一致的改进。
Prior works on joint Information Extraction (IE) typically model instance (e.g., event triggers, entities, roles, relations) interactions by representation enhancement, type dependencies scoring, or global decoding. We find that the previous models generally consider binary type dependency scoring of a pair of instances, and leverage local search such as beam search to approximate global solutions. To better integrate cross-instance interactions, in this work, we introduce a joint IE framework (CRFIE) that formulates joint IE as a high-order Conditional Random Field. Specifically, we design binary factors and ternary factors to directly model interactions between not only a pair of instances but also triplets. Then, these factors are utilized to jointly predict labels of all instances. To address the intractability problem of exact high-order inference, we incorporate a high-order neural decoder that is unfolded from a mean-field variational inference method, which achieves consistent learning and inference. The experimental results show that our approach achieves consistent improvements on three IE tasks compared with our baseline and prior work.