论文标题

迈向BCI启用Metaverse:一种联合学习和资源分配方法

Toward BCI-enabled Metaverse: A Joint Learning and Resource Allocation Approach

论文作者

Hieu, Nguyen Quang, Hoang, Dinh Thai, Nguyen, Diep N., Dutkiewicz, Eryk

论文摘要

在用户驱动的元式应用程序中,具有快速无线连接性和通过未来6G基础架构的巨大计算需求,我们提出了一个启用脑部计算机接口(BCI)的框架,为创建智能的类似人类的头像铺平了道路。我们的方法迈出了迈向元系统的第一步,在该系统中,通过通过蜂窝网络收集和分析大脑信号,将数字化身设想为更聪明。在我们提出的系统中,元用户在通过上行链路无线通道发送大脑信号的同时会体验到元应用程序,以便在基站创建智能的人类头像。因此,数字化身不仅可以为用户提供有用的建议,而且还可以使系统创建以用户为导向的应用程序。我们提出的框架涉及一个混合的决策和分类问题,在该问题中,基站必须将其计算和无线电资源分配给用户,并以有效的方式对用户的大脑信号进行分类。为此,我们提出了一种混合培训算法,该算法利用了深度强化学习的最新进展来解决该问题。具体而言,我们的混合动力培训算法包含三个彼此合作的深层神经网络,以更好地实现混合决策和分类问题。仿真结果表明,我们提出的框架可以共同解决系统的资源分配,并以高度准确的预测对用户的大脑信号进行分类。

Toward user-driven Metaverse applications with fast wireless connectivity and tremendous computing demand through future 6G infrastructures, we propose a Brain-Computer Interface (BCI) enabled framework that paves the way for the creation of intelligent human-like avatars. Our approach takes a first step toward the Metaverse systems in which the digital avatars are envisioned to be more intelligent by collecting and analyzing brain signals through cellular networks. In our proposed system, Metaverse users experience Metaverse applications while sending their brain signals via uplink wireless channels in order to create intelligent human-like avatars at the base station. As such, the digital avatars can not only give useful recommendations for the users but also enable the system to create user-driven applications. Our proposed framework involves a mixed decision-making and classification problem in which the base station has to allocate its computing and radio resources to the users and classify the brain signals of users in an efficient manner. To this end, we propose a hybrid training algorithm that utilizes recent advances in deep reinforcement learning to address the problem. Specifically, our hybrid training algorithm contains three deep neural networks cooperating with each other to enable better realization of the mixed decision-making and classification problem. Simulation results show that our proposed framework can jointly address resource allocation for the system and classify brain signals of the users with highly accurate predictions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源