论文标题

通过组成任务配置改善统一的表对文本模型的跨任务概括

Improving Cross-task Generalization of Unified Table-to-text Models with Compositional Task Configurations

论文作者

Chen, Jifan, Zhang, Yuhao, Liu, Lan, Dong, Rui, Chen, Xinchi, Ng, Patrick, Wang, William Yang, Huang, Zhiheng

论文摘要

在使用多任务学习训练的单个编码器模型统一各种桌面任务方面取得了长足进步(Xie等,2022)。但是,现有方法通常用简单的数据集名称作为编码器的前缀编码任务信息。这不仅限制了多任务学习的有效性,而且还阻碍了模型概括到培训期间未见的新领域或任务的能力,这对于现实世界中的应用至关重要。在本文中,我们提出了组成任务配置,一组提示提示到编码器,以改善统一模型的交叉任务概括。我们设计任务配置以明确指定任务类型及其输入和输出类型。我们表明,这不仅允许模型更好地学习培训中不同任务的共享知识,而且还允许我们通过编写新的配置来控制模型,这些新配置以零发的方式应用新颖的输入输出组合。我们通过十个桌面任务的实验证明,我们的方法通过在内域和零摄像机设置的明显边缘优于统一的基线,分别使用T5-large主链的平均改善为+0.5和+12.6。

There has been great progress in unifying various table-to-text tasks using a single encoder-decoder model trained via multi-task learning (Xie et al., 2022). However, existing methods typically encode task information with a simple dataset name as a prefix to the encoder. This not only limits the effectiveness of multi-task learning, but also hinders the model's ability to generalize to new domains or tasks that were not seen during training, which is crucial for real-world applications. In this paper, we propose compositional task configurations, a set of prompts prepended to the encoder to improve cross-task generalization of unified models. We design the task configurations to explicitly specify the task type, as well as its input and output types. We show that this not only allows the model to better learn shared knowledge across different tasks at training, but also allows us to control the model by composing new configurations that apply novel input-output combinations in a zero-shot manner. We demonstrate via experiments over ten table-to-text tasks that our method outperforms the UnifiedSKG baseline by noticeable margins in both in-domain and zero-shot settings, with average improvements of +0.5 and +12.6 from using a T5-large backbone, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源