论文标题

部分可观测时空混沌系统的无模型预测

P. Jones'Interpolation theorem for noncommutative martingale Hardy spaces

论文作者

Randrianantoanina, Narcisse

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $\mathcal{M}$ be a semifinite von Nemann algebra equipped with an increasing filtration $(\mathcal{M}_n)_{n\geq 1}$ of (semifinite) von Neumann subalgebras of $\M$. For $0<p \leq\infty$, let $\h_p^c(\mathcal{M})$ denote the noncommutative column conditioned martingale Hardy space associated with the filtration $(\mathcal{M}_n)_{n\geq 1}$ and the index $p$. We prove that for $0<p<\infty$, the compatible couple $\big(\h_p^c(\mathcal{M}), \h_\infty^c(\mathcal{M})\big)$ is $K$-closed in the couple $\big(L_p(\mathcal{N}), L_\infty(\mathcal{N}) \big)$ for an appropriate amplified semifinite von Neumann algebra $\mathcal{N} \supset \mathcal{M}$. This may be viewed as a noncommutative analogue of P. Jones interpolation of the couple $(H_1, H_\infty)$. As an application, we prove a general automatic transfer of real interpolation results from couples of symmetric quasi-Banach function spaces to the corresponding couples of noncommutative conditioned martingale Hardy spaces. More precisely, assume that $E$ is a symmetric quasi-Banach function space on $(0, \infty)$ satisfying some natural conditions, $0<θ<1$, and $0<r\leq \infty$. If $(E,L_\infty)_{θ,r}=F$, then \[ \big(\h_E^c(\mathcal{M}), \h_\infty^c(\mathcal{M})\big)_{θ, r}=\h_{F}^c(\mathcal{M}). \] As an illustration, we obtain that if $Φ$ is an Orlicz function that is $p$-convex and $q$-concave for some $0<p\leq q<\infty$, then the following interpolation on the noncommutative column Orlicz-Hardy space holds: for $0<θ<1$, $0<r\leq \infty$, and $Φ_0^{-1}(t)=[Φ^{-1}(t)]^{1-θ}$ for $t>0$, \[ \big(\h_Φ^c(\mathcal{M}), \h_\infty^c(\mathcal{M})\big)_{θ, r}=\h_{Φ_0, r}^c(\mathcal{M}) \] where $\h_{Φ_0,r}^c(\mathcal{M})$ is the noncommutative column Hardy space associated with the Orlicz-Lorentz space $L_{Φ_0,r}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源