论文标题
部分可观测时空混沌系统的无模型预测
Lipschitz Functions on Unions and Quotients of Metric Spaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Given a finite collection $\{X_i\}_{i\in I}$ of metric spaces, each of which has finite Nagata dimension and Lipschitz free space isomorphic to $L^1$, we prove that their union has Lipschitz free space isomorphic to $L^1$. The short proof we provide is based on the Pelczyński decomposition method. A corollary is a solution to a question of Kaufmann about the union of two planar curves with tangential intersection. A second focus of the paper is on a special case of this result that can be studied using geometric methods. That is, we prove that the Lipschitz free space of a union of finitely many quasiconformal trees is isomorphic to $L^1$. These geometric methods also reveal that any metric quotient of a quasiconformal tree has Lipschitz free space isomorphic to $L^1$. Finally, we analyze Lipschitz light maps on unions and metric quotients of quasiconformal trees in order to prove that the Lipschitz dimension of any such union or quotient is equal to 1.