论文标题
部分可观测时空混沌系统的无模型预测
Constraints on Stellar Flare Energy Ratios in the NUV and Optical From a Multiwavelength Study of GALEX and Kepler Flare Stars
论文作者
论文摘要
我们介绍了主要在近紫外线(NUV)和光学方案中使用重叠的时域调查的恒星耀斑的多波长研究。 NUV(galex)和光学(开普勒)波长域对于理解恒星耀斑的能量分馏以及限制行星气氛上相关的入射辐射很重要。我们跟进Brasseur等人中提出的NUV耀斑探测。 2019年,使用一致的开普勒长(1557耀斑)和短(2张耀斑)节奏光曲线。在这些时间,我们没有发现光耀斑的证据,也没有对两个波带之间的耀斑能量比放置限制。我们发现能量比与Galex频带能量相关,并在每种火炬的同时,开普勒带耀斑能量与NUV耀斑能量的上限的比率约为三个数量级。带有开普勒短节奏数据的两个耀斑表明,真正的开普勒带能量可能远低于基于长节奏的上限。在同一恒星上,非同样观察到的耀斑的散装耀斑能特性也出现了类似的趋势。我们提供更新的模型,以描述NUV到光学的耀斑光谱分布,包括连续和发射线,以改善仅黑体模型。观察到的能量比的传播比这些模型所包含的要大得多,并认为新物理学正在起作用。这些结果要求更好地理解NUV耀斑物理学,并提供一个警示性的故事,即仅使用光耀斑测量值来推断近距离行星的紫外线照射。
We present a multiwavelength study of stellar flares on primarily G-type stars using overlapping time domain surveys in the near ultraviolet (NUV) and optical regimes. The NUV (GALEX) and optical (Kepler) wavelength domains are important for understanding energy fractionations in stellar flares, and for constraining the associated incident radiation on a planetary atmosphere. We follow up on the NUV flare detections presented in Brasseur et al. 2019, using coincident Kepler long (1557 flares) and short (2 flares) cadence light curves. We find no evidence of optical flares at these times, and place limits on the flare energy ratio between the two wavebands. We find that the energy ratio is correlated with GALEX band energy, and extends over a range of about three orders of magnitude in the ratio of the upper limit of Kepler band flare energy to NUV flare energy at the same time for each flare. The two flares with Kepler short cadence data indicate that the true Kepler band energy may be much lower than the long cadence based upper limit. A similar trend appears for the bulk flare energy properties of non-simultaneously observed flares on the same stars. We provide updated models to describe the flare spectral energy distribution from the NUV through the optical including continua and emission lines to improve upon blackbody-only models. The spread of observed energy ratios is much larger than encompassed by these models and suggests new physics is at work. These results call for better understanding of NUV flare physics and provide a cautionary tale about using only optical flare measurements to infer the UV irradiation of close-in planets.