论文标题

部分可观测时空混沌系统的无模型预测

Topological Strings on Non-Commutative Resolutions

论文作者

Katz, Sheldon, Klemm, Albrecht, Schimannek, Thorsten, Sharpe, Eric

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In this paper we propose a definition of torsion refined Gopakumar-Vafa (GV) invariants for Calabi-Yau threefolds with terminal nodal singularities that do not admit Kähler crepant resolutions. Physically, the refinement takes into account the charge of five-dimensional BPS states under a discrete gauge symmetry in M-theory. We propose a mathematical definition of the invariants in terms of the geometry of all non-Kähler crepant resolutions taken together. The invariants are encoded in the A-model topological string partition functions associated to non-commutative (nc) resolutions of the Calabi-Yau. Our main example will be a singular degeneration of the generic Calabi-Yau double cover of $\mathbb{P}^3$ and leads to an enumerative interpretation of the topological string partition function of a hybrid Landau-Ginzburg model. Our results generalize a recent physical proposal made in the context of torus fibered Calabi-Yau manifolds by one of the authors and clarify the associated enumerative geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源