论文标题
将社交媒体危机叙事转化为道路网络利用率指标:2020年俄克拉荷马州冰暴
Translating Social Media Crisis Narratives into Road Network Utilization Metrics: The Case of 2020 Oklahoma Ice Storm
论文作者
论文摘要
灾难时期的风险交流很复杂,涉及社交网络(即公共和/或私人机构;当地居民)的快速和多样化的沟通,以及有限的动员能力和物理基础设施网络的运营约束。尽管越来越多的有关基础设施相互依存和共同依赖的社会物理系统的文献,但对在线社交网络中的风险通信如何在重大灾难期间对物理基础设施网络进行了深入的了解仍然有限,更不用说在复杂的风险事件中对在物理基础设施网络中进行了限制。这项研究分析了危机流动性和与活动相关的社交互动的大规模数据集以及通过社交媒体(Twitter)提供的社区(2020年10月)在俄克拉荷马州影响的社区(Twitter)。俄克拉荷马州居民因190年10月26日至2020年10月26日,2020年10月26日)面临的俄克拉荷马州居民而更加复杂,该风暴造成了毁灭性的交通撞击(等),这是由于冰的过度积累而造成的。通过使用Twitter的最近发布的学术应用程序界面(API)提供完整且无偏见的数据,涵盖了俄克拉荷马州整个状态的地理标记推文(约210k),并考虑了与Ice Storm相关的推文(约14.2k)。首先,该研究使用自然语言处理和文本量化技术来翻译危机叙事(即推文)。接下来,使用传统的GIS技术将地理标签的推文映射到共同确定的道路网络中。最后,使用网络科学理论和量化的社会叙事来生成见解,以解释俄克拉荷马州社区在大流行期间受到冰暴事件影响的俄克拉荷马州社区的不同要素(例如,当地道路,高速公路等)。
Risk communication in times of disasters is complex, involving rapid and diverse communication in social networks (i.e., public and/or private agencies; local residents) as well as limited mobilization capacity and operational constraints of physical infrastructure networks. Despite a growing literature on infrastructure interdependencies and co-dependent social-physical systems, an in-depth understanding of how risk communication in online social networks weighs into physical infrastructure networks during a major disaster remains limited, let alone in compounding risk events. This study analyzes large-scale datasets of crisis mobility and activity-related social interactions and concerns available through social media (Twitter) for communities that were impacted by an ice storm (Oct. 2020) in Oklahoma. Compounded by the COVID-19 pandemic, Oklahoma residents faced this historic ice storm (Oct. 26, 2020-Oct. 29, 2020) that caused devastating traffic impacts (among others) due to excessive ice accumulation. By using the recently released academic Application Programming Interface (API) by Twitter that provides complete and unbiased data, geotagged tweets (approx. 210K) were collected covering the entire state of Oklahoma, and ice storm-related tweets (approx. 14.2K) were considered. First, the study uses natural language processing and text quantification techniques to translate crisis narratives (i.e., tweets). Next, geo-tagged tweets are mapped into co-located road networks using traditional GIS techniques. Finally, insights are generated using network science theories and quantified social narratives to interpret different elements of road networks (e.g., local roads, freeways, etc.) for the Oklahoma communities that were impacted by the ice storm event during the pandemic.