论文标题
使用任务参数方程学习者网络学习和推断机器人技能
Learning and Extrapolation of Robotic Skills using Task-Parameterized Equation Learner Networks
论文作者
论文摘要
模仿学习方法在培训数据范围内实现了良好的概括,但是在此范围之外查询时倾向于产生不可预测的动作。我们提出了一种新颖的模仿学习方法,并具有增强的外推能力,从而利用了所谓的方程学习者网络(EQLN)。与常规方法不同,EQLN使用监督学习来适合一组分析表达式,使它们可以推断出训练数据范围。我们使用一组代表每个运动的空间属性的任务依赖性参数来增强任务演示,并使用它们来训练EQLN。在运行时,这些功能用于查询任务参数的方程学习者网络(TP-EQLN)并生成相应的机器人轨迹。一组功能编码任务的运动学约束,例如所需的高度或最终点要达到。我们验证了我们在操纵任务上的方法的结果,在这些任务中,保持外推域中运动形状很重要。我们的方法还与现有的最新方法,模拟和实际设置进行了比较。实验结果表明,TP-EQLN可以尊重特征参数中编码的轨迹的约束,即使在外推域中,也可以保留演示中提供的轨迹的整体形状。
Imitation learning approaches achieve good generalization within the range of the training data, but tend to generate unpredictable motions when querying outside this range. We present a novel approach to imitation learning with enhanced extrapolation capabilities that exploits the so-called Equation Learner Network (EQLN). Unlike conventional approaches, EQLNs use supervised learning to fit a set of analytical expressions that allows them to extrapolate beyond the range of the training data. We augment the task demonstrations with a set of task-dependent parameters representing spatial properties of each motion and use them to train the EQLN. At run time, the features are used to query the Task-Parameterized Equation Learner Network (TP-EQLN) and generate the corresponding robot trajectory. The set of features encodes kinematic constraints of the task such as desired height or a final point to reach. We validate the results of our approach on manipulation tasks where it is important to preserve the shape of the motion in the extrapolation domain. Our approach is also compared with existing state-of-the-art approaches, in simulation and in real setups. The experimental results show that TP-EQLN can respect the constraints of the trajectory encoded in the feature parameters, even in the extrapolation domain, while preserving the overall shape of the trajectory provided in the demonstrations.