论文标题

贷款:使用对象注意的轻量级网络从无人机的空中遥感图像中提取建筑物和道路

LOANet: A Lightweight Network Using Object Attention for Extracting Buildings and Roads from UAV Aerial Remote Sensing Images

论文作者

Han, Xiaoxiang, Liu, Yiman, Liu, Gang, Lin, Yuanjie, Liu, Qiaohong

论文摘要

从深度学习中提取建筑物(UAV)遥感图像中提取建筑物和道路的语义细分比在测量和映射字段中的传统手动细分变得更有效,更方便的方法。为了使模型轻巧并提高模型的准确性,提出了一个使用对象注意的轻量级网络(Loanet),用于建筑物和无人机航空遥感图像的建筑物和道路。拟议的网络采用了编码器架构,其中开发了一个轻巧的密集连接网络(LDCNET)作为编码器。在解码器部分中,由非常空间的金字塔池模块(ASPP)和对象注意模块(OAM)组成的双尺度上下文模块旨在从无用的遥感图像的特征图中捕获更多上下文信息。在ASPP和OAM之间,特征金字塔网络(FPN)模块用于融合从ASPP提取的多尺度功能。无人机拍摄的遥感图像的私人数据集,其中包含2431个训练集,945个验证集和475个测试集。所提出的基本模型在此数据集上表现良好,只有140万参数和5.48g浮点操作(FLOPS),可实现出色的平均跨工会(MIOU)。已经进行了有关公开可用的洛夫加和城市-OSM数据集的进一步实验,以进一步验证拟议的基本模型和大型模型的有效性,并实现了出色的MIOU结果。所有代码均可在https://github.com/gtlinyer/loanet上找到。

Semantic segmentation for extracting buildings and roads from uncrewed aerial vehicle (UAV) remote sensing images by deep learning becomes a more efficient and convenient method than traditional manual segmentation in surveying and mapping fields. In order to make the model lightweight and improve the model accuracy, a Lightweight Network Using Object Attention (LOANet) for Buildings and Roads from UAV Aerial Remote Sensing Images is proposed. The proposed network adopts an encoder-decoder architecture in which a Lightweight Densely Connected Network (LDCNet) is developed as the encoder. In the decoder part, the dual multi-scale context modules which consist of the Atrous Spatial Pyramid Pooling module (ASPP) and the Object Attention Module (OAM) are designed to capture more context information from feature maps of UAV remote sensing images. Between ASPP and OAM, a Feature Pyramid Network (FPN) module is used to fuse multi-scale features extracted from ASPP. A private dataset of remote sensing images taken by UAV which contains 2431 training sets, 945 validation sets, and 475 test sets is constructed. The proposed basic model performs well on this dataset, with only 1.4M parameters and 5.48G floating point operations (FLOPs), achieving excellent mean Intersection-over-Union (mIoU). Further experiments on the publicly available LoveDA and CITY-OSM datasets have been conducted to further validate the effectiveness of the proposed basic and large model, and outstanding mIoU results have been achieved. All codes are available on https://github.com/GtLinyer/LOANet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源