论文标题
RWIFISLAM:在环境环境中有效的基于WiFi范围的大满贯系统
rWiFiSLAM: Effective WiFi Ranging based SLAM System in Ambient Environments
论文作者
论文摘要
在本文中,我们提出了基于WiFi范围测量的室内定位系统Rwifislam。当室内定位技术无法在室内环境中访问高质量的GPS信号时,它们在移动机器人中起着重要作用。室内本地化还具有许多其他应用,例如救援,智能建筑等。惯性测量单元(IMU)已用于行人死亡计算(PDR),以在室内环境中提供本地化服务,因为它不依赖任何其他信号。尽管PDR是一种有前途的技术,但它仍然遭受了移动设备中IMU的不可避免的噪音和偏见。对于这些情况,循环封闭是必需的。在本文中,我们设计了一个基于WiFi范围测量值的有效环路闭合机制,以及在可靠的姿势图形大满贯框架中以进行室内定位的IMU测量。提出的方法的一种新颖性是,我们消除了WiFi访问点位置的全部知识的要求,这使得我们提出的方法对于新的和/或动态环境可行。我们在真实环境中评估了我们的设计系统,并表明所提出的方法可以达到子米定位精度,并将本地化性能提高90 \%以上,而不是基于IMU的PDR。
In this paper, we propose rWiFiSLAM, an indoor localisation system based on WiFi ranging measurements. Indoor localisation techniques play an important role in mobile robots when they cannot access good quality GPS signals in indoor environments. Indoor localisation also has many other applications, such as rescue, smart buildings, etc. Inertial Measurement Units (IMU) have been used for Pedestrian Dead Reckoning (PDR) to provide localisation services in the indoor environment as it does not rely on any other signals. Although PDR is a promising technique, it still suffers from unavoidable noise and bias from IMUs in mobile devices. Loop closure is necessary for these scenarios. In this paper, we design an efficient loop closure mechanism based on WiFi ranging measurements along with IMU measurements in a robust pose graph SLAM framework for indoor localisation. One novelty of the proposed method is that we remove the requirement of the full knowledge of the WiFi access point locations, which makes our proposed method feasible for new and/or dynamic environments. We evaluate our designed system in real environments and show the proposed method can achieve sub-meter localisation accuracy and improve the localisation performance by more than 90\% compared with the IMU based PDR.