论文标题

分析性K-固定性和局部墙壁交叉

Analytic K-semistability and local wall-crossing

论文作者

Sektnan, Lars Martin, Tipler, Carl

论文摘要

对于恒定标量曲率kähler歧管的小极化变形,在某些共同的消失条件下,我们证明沿附近极化沿线的k-溶解性意味着存在恒定的标态曲率kähler指标。在这种情况下,我们将k-溶解度减少到CSCK变性上经典Futaki不变的计算。我们的结果与特定的家族有关,并在极化变化时为CSCK歧管的模量提供了局部墙面杂交现象。

For a small polarised deformation of a constant scalar curvature Kähler manifold, under some cohomological vanishing conditions, we prove that K-polystability along nearby polarisations implies the existence of a constant scalar curvature Kähler metric. In this setting, we reduce K-polystability to the computation of the classical Futaki invariant on the cscK degeneration. Our result holds on specific families and provides local wall-crossing phenomena for the moduli of cscK manifolds when the polarisation varies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源