论文标题
概括基于还原的代数多族
Generalizing Reduction-Based Algebraic Multigrid
论文作者
论文摘要
代数多机(AMG)方法通常是稳健且有效的求解器,用于解决由离散的PDE和其他问题引起的较大且稀疏的线性系统,依靠启发式图算法来实现其性能。基于还原的AMG(AMGR)算法试图通过提供两级收敛范围来形式化这些启发式方法,这些范围依赖于给定基质的分配特性到其微网格自由度。 Maclachlan和Saad(SISC 2007)证明,AMGR方法可证明对对角线主导性的对称和正定矩阵可证明具有强大的两级收敛性,其收敛因子的融合因子是变形参数的函数。但是,当将AMGR算法应用于非对角线占主导地位的矩阵时,不仅会收敛因子界限无法保持,而且测量的性能显着降低。在这里,我们对经典AMGR算法进行了修改,该算法可以提高其在非对角线占主导地位的矩阵上的性能,利用连接的强度,稀疏的近似逆(SPAI)技术以及插值截断和恢复,以提高算法的稳健性,同时维持算法的稳健性。我们提出了数值结果,证明了这种方法对于经典的各向同性扩散问题和来自各向异性扩散的非基本支配系统的鲁棒性。
Algebraic Multigrid (AMG) methods are often robust and effective solvers for solving the large and sparse linear systems that arise from discretized PDEs and other problems, relying on heuristic graph algorithms to achieve their performance. Reduction-based AMG (AMGr) algorithms attempt to formalize these heuristics by providing two-level convergence bounds that depend concretely on properties of the partitioning of the given matrix into its fine- and coarse-grid degrees of freedom. MacLachlan and Saad (SISC 2007) proved that the AMGr method yields provably robust two-level convergence for symmetric and positive-definite matrices that are diagonally dominant, with a convergence factor bounded as a function of a coarsening parameter. However, when applying AMGr algorithms to matrices that are not diagonally dominant, not only do the convergence factor bounds not hold, but measured performance is notably degraded. Here, we present modifications to the classical AMGr algorithm that improve its performance on matrices that are not diagonally dominant, making use of strength of connection, sparse approximate inverse (SPAI) techniques, and interpolation truncation and rescaling, to improve robustness while maintaining control of the algorithmic costs. We present numerical results demonstrating the robustness of this approach for both classical isotropic diffusion problems and for non-diagonally dominant systems coming from anisotropic diffusion.