论文标题

温度密度的电子密度响应

Electronic Density Response of Warm Dense Matter

论文作者

Dornheim, Tobias, Moldabekov, Zhandos A., Ramakrishna, Kushal, Tolias, Panagiotis, Baczewski, Andrew D., Kraus, Dominik, Preston, Thomas R., Chapman, David A., Böhme, Maximilian P., Döppner, Tilo, Graziani, Frank, Bonitz, Michael, Cangi, Attila, Vorberger, Jan

论文摘要

在极端温度和压力下的物质 - 在文献中通常被称为温暖的物质(WDM) - 在我们的宇宙中无处不在,并且发生在许多天体物理物体中,例如巨型行星内部和棕色矮人。此外,WDM对于诸如惯性限制融合等技术应用非常重要,并且在实验室中使用不同的技术实现。理解WDM的一个特别重要的属性是通过其对外部扰动的电子密度响应给出的。这种响应特性通常在X射线Thomson散射(XRTS)实验中进行探测,此外,对于WDM的理论描述而言,这是核心。在这项工作中,我们概述了该领域的许多最新发展。为此,我们总结了相关的理论背景,涵盖了线性响应理论以及非线性效应,完全动态的响应及其静态的,与时间无关的极限以及密度响应属性与假想时间相关函数(ITCF)之间的联系。此外,我们介绍了最重要的数值模拟技术,包括从头启动路径积分蒙特卡洛(PIMC)模拟和不同的热密度功能理论(DFT)方法。从实际的角度来看,我们为不同的密度响应特性提供了各种模拟结果,涵盖了均匀电子气体和现实的WDM系统(例如氢)的原型模型。此外,我们展示了如何使用ITCF的概念来从任意复杂系统的XRTS测量中推断温度,而无需任何模型或近似值。最后,我们根据模拟和实验之间的密切相互作用概述了未来发展的策略。

Matter at extreme temperatures and pressures -- commonly known as warm dense matter (WDM) in the literature -- is ubiquitous throughout our Universe and occurs in a number of astrophysical objects such as giant planet interiors and brown dwarfs. Moreover, WDM is very important for technological applications such as inertial confinement fusion, and is realized in the laboratory using different techniques. A particularly important property for the understanding of WDM is given by its electronic density response to an external perturbation. Such response properties are routinely probed in x-ray Thomson scattering (XRTS) experiments, and, in addition, are central for the theoretical description of WDM. In this work, we give an overview of a number of recent developments in this field. To this end, we summarize the relevant theoretical background, covering the regime of linear-response theory as well as nonlinear effects, the fully dynamic response and its static, time-independent limit, and the connection between density response properties and imaginary-time correlation functions (ITCF). In addition, we introduce the most important numerical simulation techniques including ab initio path integral Monte Carlo (PIMC) simulations and different thermal density functional theory (DFT) approaches. From a practical perspective, we present a variety of simulation results for different density response properties, covering the archetypal model of the uniform electron gas and realistic WDM systems such as hydrogen. Moreover, we show how the concept of ITCFs can be used to infer the temperature from XRTS measurements of arbitrarily complex systems without the need for any models or approximations. Finally, we outline a strategy for future developments based on the close interplay between simulations and experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源