论文标题

使用无人机进行敏捷主动目标传感的增强学习

Reinforcement Learning for Agile Active Target Sensing with a UAV

论文作者

Goel, Harsh, Lipschitz, Laura Jarin, Agarwal, Saurav, Manjanna, Sandeep, Kumar, Vijay

论文摘要

主动目标传感是在环境中发现和分类未知数的目标的任务,并且在搜索和撤回任务中至关重要。本文开发了一种深入的增强学习方法来计划信息轨迹,以增加未驾驶飞机(UAV)发现缺失目标的可能性。我们的方法有效地(1)探索了发现新目标的环境,(2)利用其当前对目标状态的信念,并结合了不准确的传感器模型以进行高保真性分类,(3)通过采用动作灵感图书馆来为敏捷无人机生成动态可行的轨迹。对随机生成的环境的广泛模拟表明,与其他几个基线相比,我们的方法在发现和分类目标方面更有效。与启发式信息路径计划方法相比,我们方法的独特特征是,与真实目标分布不同的偏差不同,从而减轻了设计特定于应用条件的启发式方法的挑战。

Active target sensing is the task of discovering and classifying an unknown number of targets in an environment and is critical in search-and-rescue missions. This paper develops a deep reinforcement learning approach to plan informative trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover missing targets. Our approach efficiently (1) explores the environment to discover new targets, (2) exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification, and (3) generates dynamically feasible trajectories for an agile UAV by employing a motion primitive library. Extensive simulations on randomly generated environments show that our approach is more efficient in discovering and classifying targets than several other baselines. A unique characteristic of our approach, in contrast to heuristic informative path planning approaches, is that it is robust to varying amounts of deviations of the prior belief from the true target distribution, thereby alleviating the challenge of designing heuristics specific to the application conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源