论文标题

有限的GK维尼科尔斯对角线类型和有限根系的代数

Finite GK-dimensional Nichols algebras of diagonal type and finite root systems

论文作者

Angiono, Iván, Iglesias, Agustín García

论文摘要

令$(v,c)$为对角线类型的有限维编织矢量空间。我们表明,nichols代数$ \ mathfrak {b}(v)$的Gelfand Kirillov尺寸是有限的,并且仅当相应的根系是有限的,即$ \ Mathfrak {b}(v)$允许使用有限的发电机数量的PBW基础。 这是在Arxiv中猜想的:1606.02521,并以$ \ dim v = 2,3 $在ARXIV中证明:1803.08804,Arxiv:2106.10143。

Let $(V,c)$ be a finite-dimensional braided vector space of diagonal type. We show that the Gelfand Kirillov dimension of the Nichols algebra $\mathfrak{B}(V)$ is finite if and only if the corresponding root system is finite, that is $\mathfrak{B}(V)$ admits a PBW basis with a finite number of generators. This had been conjectured in arXiv:1606.02521 and proved for $\dim V=2,3$ in arXiv:1803.08804, arXiv:2106.10143 respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源