论文标题
Waymo自动驾驶系统的碰撞避免测试
Collision Avoidance Testing of the Waymo Automated Driving System
论文作者
论文摘要
本文介绍了Waymo的避免碰撞测试(CAT)方法:一种基于方案的测试方法,可评估Waymo驱动程序自动化驾驶系统的安全性(ADS)在其他需要紧急逃避手术的道路使用者中的冲突情况下的预期功能。由于SAE 4级AD是负责动态驾驶任务(DDT)的原因,因此很难使用基于方案的测试来评估4级ADS,因此由于潜在的无限数量的操作场景,其中危险情况可能会展开。为此,在本文中,我们首先描述了CAT方法论的安全测试目标,包括碰撞和严重的伤害指标以及代表对冲突人类驱动程序的不受冲突的眼睛的参考行为模型,用于形成接受标准。之后,我们介绍了从人类数据,ADS测试数据以及有关产品设计和相关操作设计领域(ODD)的专家知识(ODD)结合使用的潜在危险情况的过程。接下来提出了测试分配和执行策略,该策略仅利用在测试轨道,现实世界驾驶或模拟传感器数据上收集的传感器数据构建的模拟。该论文结束于将CAT应用于Waymo在加利福尼亚州旧金山和亚利桑那州菲尼克斯的完全自主乘车服务的结果。场景识别的迭代性质结合了十多年的公路测试经验,导致一个方案数据库,该数据库将给定奇数的响应者角色场景收敛为代表性的一组。使用Waymo的虚拟测试平台,该平台被校准为广告开发的多年的数据收集的数据,CAT方法论提供了可靠且可扩展的安全性评估。
This paper describes Waymo's Collision Avoidance Testing (CAT) methodology: a scenario-based testing method that evaluates the safety of the Waymo Driver Automated Driving Systems' (ADS) intended functionality in conflict situations initiated by other road users that require urgent evasive maneuvers. Because SAE Level 4 ADS are responsible for the dynamic driving task (DDT), when engaged, without immediate human intervention, evaluating a Level 4 ADS using scenario-based testing is difficult due to the potentially infinite number of operational scenarios in which hazardous situations may unfold. To that end, in this paper we first describe the safety test objectives for the CAT methodology, including the collision and serious injury metrics and the reference behavior model representing a non-impaired eyes on conflict human driver used to form an acceptance criterion. Afterward, we introduce the process for identifying potentially hazardous situations from a combination of human data, ADS testing data, and expert knowledge about the product design and associated Operational Design Domain (ODD). The test allocation and execution strategy is presented next, which exclusively utilize simulations constructed from sensor data collected on a test track, real-world driving, or from simulated sensor data. The paper concludes with the presentation of results from applying CAT to the fully autonomous ride-hailing service that Waymo operates in San Francisco, California and Phoenix, Arizona. The iterative nature of scenario identification, combined with over ten years of experience of on-road testing, results in a scenario database that converges to a representative set of responder role scenarios for a given ODD. Using Waymo's virtual test platform, which is calibrated to data collected as part of many years of ADS development, the CAT methodology provides a robust and scalable safety evaluation.