论文标题
高精度计算和广义stieltjes常数的新渐近公式
High precision computation and a new asymptotic formula for the generalized Stieltjes constants
论文作者
论文摘要
我们提供了一种有效的方法来评估广义的stieltjes常数$γ_n(a)$数值以任意准确性的$ n $和$ n \ gg | a | $ values。该方法使用常数的积分表示,并通过在集成点的鞍点附近应用双指数(de)正交方法来评估积分。此外,我们为广义stieltjes常数提供了高度准确的渐近公式。
We provide an efficient method to evaluate the generalized Stieltjes constants $γ_n(a)$ numerically to arbitrary accuracy for large $n$ and $n \gg |a|$ values. The method uses an integral representation for the constants and evaluates the integral by applying the double exponential (DE) quadrature method near the saddle points of the integrands. Further, we provide a highly accurate asymptotic formula for the generalized Stieltjes constants.