论文标题
通过随机测量对量子相关的完全表征
Complete characterization of quantum correlations by randomized measurements
论文作者
论文摘要
量子力学预测比经典物理学更强的相关性的事实是量子信息处理的重要基石。实际上,这些量子相关是用于各种任务的宝贵资源,例如量子密钥分布或量子传送,但是在实验环境中表征这些相关性是一项艰巨的任务,尤其是在没有可用共享参考框架的情况下。根据定义,量子相关性是独立的参考框架,即在局部变换下不变;但是,这种出于物理动机的不变性意味着一种专门的数学结构,因此构成了对实验中这些相关性有效分析的障碍。在这里,我们提供了一种使用局部随机测量值直接测量量子状态的任何本地不变特性的方法,并提出了一个详细的工具箱,以分析两个量子位的这些相关性。我们使用成对的纠缠光子对实验实施了这些方法,以表征它们对量子传送的有用性及其以最简单形式显示量子非局部性的潜力。我们的结果可以应用于各种量子计算平台,从而可以简单地分析体系结构中任意远处的相关性。
The fact that quantum mechanics predicts stronger correlations than classical physics is an essential cornerstone of quantum information processing. Indeed, these quantum correlations are a valuable resource for various tasks, such as quantum key distribution or quantum teleportation, but characterizing these correlations in an experimental setting is a formidable task, especially in scenarios where no shared reference frames are available. By definition, quantum correlations are reference-frame independent, i.e., invariant under local transformations; this physically motivated invariance implies, however, a dedicated mathematical structure and, therefore, constitutes a roadblock for an efficient analysis of these correlations in experiments. Here we provide a method to directly measure any locally invariant property of quantum states using locally randomized measurements, and we present a detailed toolbox to analyze these correlations for two quantum bits. We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation and their potential to display quantum nonlocality in its simplest form. Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits in the architecture.