论文标题
切换棋盘
Switching Checkerboards
论文作者
论文摘要
为了研究$ \ MathBf {M}(R,C)$,固定行和列的二进制矩阵$ r $和$ c $,我们考虑表单$ \ begin {pmatrix} 1&0&0&0&0&1&1&1&1 end end end eend {pmatrix} $ and $ \ begin&1&0&1&1&1&1&1&1&1&1 \ end {pmatrix} $,分别称为正和负芯板。我们定义了带顶点的矩阵$ g(r,c)$的定向图图,并用顶点$ \ mathbf {m}(r,c)$和一个来自$ \ mathbf {a} $到$ \ mathbf {a'} $的弧线,您可以通过poterand contect a $ contect a $} $ {我们表明$ g(r,c)$是一个有指向的无环图,并确定构成$ g(r,c)$的独特水槽和来源的矩阵类别。给定$ \ mathbf {a},\ mathbf {a'} \ in \ mathbf {m}(r,c)$,我们给出了$ \ \ mthbf {m Mathbf {m} = \ mathbf {a'}'} - \ mathbf {a} $ direct $ nation $ nation $ {a' $ \ mathbf {a'} $。 然后,我们考虑$ \ mathbf {m}(\ Mathcal d)$的特殊情况,这是具有固定度分布$ \ Mathcal d $的图形矩阵的集合。我们通过以对称对切换负面的对立板相应地定义$ g(\ Mathcal D)$。我们表明,$ z_2 $是基于第二个Zagreb索引的频谱半径$λ_1$的近似值,它沿$ g(\ Mathcal d)$的弧线不折叠。另外,$ \ ll $在$ g(\ Mathcal d)$的水槽中达到$ \ mathbf {m}(\ Mathcal d)$中的最大值。我们提供模拟结果,表明将连续的正开关应用于ERD \ H OS-Rényi图可以显着增加$λ_1$。
In order to study $\mathbf{M}(R,C)$, the set of binary matrices with fixed row and column sums $R$ and $C$, we consider sub-matrices of the form $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, called positive and negative checkerboard respectively. We define an oriented graph of matrices $G(R,C)$ with vertex set $\mathbf{M}(R,C)$ and an arc from $\mathbf{A}$ to $\mathbf{A'}$ indicates you can reach $\mathbf{A'}$ by switching a negative checkerboard in $\mathbf{A}$ to positive. We show that $G(R,C)$ is a directed acyclic graph and identify classes of matrices which constitute unique sinks and sources of $G(R,C)$. Given $\mathbf{A},\mathbf{A'}\in\mathbf{M}(R,C)$, we give necessary conditions and sufficient conditions on $\mathbf{M}=\mathbf{A'}-\mathbf{A}$ for the existence of a directed path from $\mathbf{A}$ to $\mathbf{A'}$. We then consider the special case of $\mathbf{M}(\mathcal D)$, the set of adjacency matrices of graphs with fixed degree distribution $\mathcal D$. We define $G(\mathcal D)$ accordingly by switching negative checkerboards in symmetric pairs. We show that $Z_2$, an approximation of the spectral radius $λ_1$ based on the second Zagreb index, is non-decreasing along arcs of $G(\mathcal D)$. Also, $\ll$ reaches its maximum in $\mathbf{M}(\mathcal D)$ at a sink of $G(\mathcal D)$. We provide simulation results showing that applying successive positive switches to an Erd\H os-Rényi graph can significantly increase $λ_1$.