论文标题

加强随机过程的网络:渐近极化的概率和相关的一般结果

Networks of reinforced stochastic processes: probability of asymptotic polarization and related general results

论文作者

Aletti, Giacomo, Crimaldi, Irene, Ghiglietti, Andrea

论文摘要

在加强随机过程的网络中,对于参数的某些值,所有代理的倾斜度都同步并肯定地趋向于某个随机变量。目前的工作旨在阐明何时可以渐近地极化代理,即,何时公共极限倾斜度可以采用极端值0或1,概率为零,严格为正或等于一个。此外,我们提出了一种合适的技术来估计这种概率,与理论结果一起,在一类Martingales在[0,1]中的一个类别和遵循特定动力学的更通用环境中构建了构图。

In a network of reinforced stochastic processes, for certain values of the parameters, all the agents' inclinations synchronize and converge almost surely toward a certain random variable. The present work aims at clarifying when the agents can asymptotically polarize, i.e. when the common limit inclination can take the extreme values, 0 or 1, with probability zero, strictly positive, or equal to one. Moreover, we present a suitable technique to estimate this probability that, along with the theoretical results, has been framed in the more general setting of a class of martingales taking values in [0, 1] and following a specific dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源