论文标题
Airvo:一个照明射击点线视觉探光仪
AirVO: An Illumination-Robust Point-Line Visual Odometry
论文作者
论文摘要
本文提出了一个照明射击视觉探光(VO)系统,该系统既包含基于学习的角点算法和扩展的线路特征算法。为了使动态照明稳健,该系统采用卷积神经网络(CNN)和图神经网络(GNN)来检测和匹配可靠且信息丰富的角点。然后使用点特征匹配的结果以及点和线特征的分布来匹配和三角形线。通过加速CNN和GNN零件并优化管道,提出的系统可以在低功率嵌入式平台上实时运行。在几个具有不同照明条件的数据集上评估了所提出的VO,结果表明,它在准确性和鲁棒性方面优于其他最先进的VO系统。拟议系统的开源性质允许研究社区轻松实施和自定义,从而为各种应用提供了进一步的开发和改进VO。
This paper proposes an illumination-robust visual odometry (VO) system that incorporates both accelerated learning-based corner point algorithms and an extended line feature algorithm. To be robust to dynamic illumination, the proposed system employs the convolutional neural network (CNN) and graph neural network (GNN) to detect and match reliable and informative corner points. Then point feature matching results and the distribution of point and line features are utilized to match and triangulate lines. By accelerating CNN and GNN parts and optimizing the pipeline, the proposed system is able to run in real-time on low-power embedded platforms. The proposed VO was evaluated on several datasets with varying illumination conditions, and the results show that it outperforms other state-of-the-art VO systems in terms of accuracy and robustness. The open-source nature of the proposed system allows for easy implementation and customization by the research community, enabling further development and improvement of VO for various applications.