论文标题

全线矩阵Schrödinger方程和半线散射的统一转换的分解

Factorization for the full-line matrix Schrödinger equation and a unitary transformation to the half-line scattering

论文作者

Aktosun, Tuncay, Weder, Ricardo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The scattering matrix for the full-line matrix Schrödinger equation is analyzed when the corresponding matrix-valued potential is selfadjoint, integrable, and has a finite first moment. The matrix-valued potential is decomposed into a finite number of fragments, and a factorization formula is presented expressing the matrix-valued scattering coefficients in terms of the matrix-valued scattering coefficients for the fragments. Using the factorization formula, some explicit examples are provided illustrating that in general the left and right matrix-valued transmission coefficients are unequal. A unitary transformation is established between the full-line matrix Schrödinger operator and the half-line matrix Schrödinger operator with a particular selfadjoint boundary condition and by relating the full-line and half-line potentials appropriately. Using that unitary transformation, the relations are established between the full-line and the half-line quantities such as the Jost solutions, the physical solutions, and the scattering matrices. Exploiting the connection between the corresponding full-line and half-line scattering matrices, Levinson's theorem on the full line is proved and is related to Levinson's theorem on the half line.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源