论文标题
部分可观测时空混沌系统的无模型预测
Robustness Evaluation of Regression Tasks with Skewed Domain Preferences
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In natural phenomena, data distributions often deviate from normality. One can think of cataclysms as a self-explanatory example: events that occur almost never, and at the same time are many standard deviations away from the common outcome. In many scientific contexts it is exactly these tail events that researchers are most interested in anticipating, so that adequate measures can be taken to prevent or attenuate a major impact on society. Despite such efforts, we have yet to provide definite answers to crucial issues in evaluating predictive solutions in domains such as weather, pollution, health. In this paper, we deal with two encapsulated problems simultaneously. First, assessing the performance of regression models when non-uniform preferences apply - not all values are equally relevant concerning the accuracy of their prediction, and there's a particular interest in the most extreme values. Second, assessing the robustness of models when dealing with uncertainty regarding the actual underlying distribution of values relevant for such problems. We show how different levels of relevance associated with target values may impact experimental conclusions, and demonstrate the practical utility of the proposed methods.