论文标题

绝热压缩的波浪暗物质光环和中间质量比灵感

Adiabatically compressed wave dark matter halo and intermediate-mass ratio inspirals

论文作者

Kim, Hyungjin, Lenoci, Alessandro, Stomberg, Isak, Xue, Xiao

论文摘要

中央巨大黑洞的绝热生长可以压缩周围的暗物质光环,从而导致暗物质光环的陡峭轮廓。这种现象称为绝热压缩。我们研究了波暗物质的绝热压缩 - 一种光之前的暗物质候选者,其质量小于几eV。使用绝热定理,我们表明绝热压缩会导致在半经典极限下类似于粒子暗物质光环的深色暗物质光环。压缩波晕与中心附近的粒子光环的不同之处在于半经典近似分解的中心,并且中央轮廓取决于暗物质和中央黑洞质量,因为它们确定了孤子和低角度动量模式是否可以在天文学时间尺度上存活而不会被黑洞吸收。这样的压缩曲线具有几种天体物理含义。作为一个例子,我们研究了中央中间质量黑洞与波浪暗物质晕中的紧凑型太阳能物体之间的引力波。由于质量密度的增强,压缩波暗物质光环在轨道对象上施加更强的动力学摩擦,从而导致引力波的衰减。由于密度分布的差异以及相对抑制的动力摩擦力,源自粒子暗光晕中灵感的模式与粒子暗物质中的灵感不同。我们研究了未来重力波探测器的前景,例如激光干涉仪空间天线,并确定可以从引力波观测中重建波暗物质光环的物理场景。

The adiabatic growth of a central massive black hole could compress the surrounding dark matter halo, leading to a steeper profile of the dark matter halo. This phenomenon is called adiabatic compression. We investigate the adiabatic compression of wave dark matter - a light bosonic dark matter candidate with its mass smaller than a few eV. Using the adiabatic theorem, we show that the adiabatic compression leads to a much denser wave dark matter halo similar to the particle dark matter halo in the semiclassical limit. The compressed wave halo differs from that of the particle halo near the center where the semiclassical approximation breaks down, and the central profile depends on dark matter and the central black hole mass as they determine whether the soliton and low angular momentum modes can survive over the astrophysical time scale without being absorbed by the black hole. Such a compressed profile has several astrophysical implications. As one example, we study the gravitational waves from the inspiral between a central intermediate-mass black hole and a compact solar-mass object within the wave dark matter halo. Due to the enhanced mass density, the compressed wave dark matter halo exerts stronger dynamical friction on the orbiting object, leading to the dephasing of the gravitational waves. The pattern of dephasing is distinctive from that of inspirals in the particle dark matter halo because of the difference in density profile and because of the relatively suppressed dynamical friction force, originating from the wave nature of dark matter. We investigate the prospects of future gravitational wave detectors, such as Laser Interferometer Space Antenna, and identify physics scenarios where the wave dark matter halo can be reconstructed from gravitational wave observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源