论文标题

部分可观测时空混沌系统的无模型预测

Diffusion Probabilistic Models beat GANs on Medical Images

论文作者

Müller-Franzes, Gustav, Niehues, Jan Moritz, Khader, Firas, Arasteh, Soroosh Tayebi, Haarburger, Christoph, Kuhl, Christiane, Wang, Tianci, Han, Tianyu, Nebelung, Sven, Kather, Jakob Nikolas, Truhn, Daniel

论文摘要

深度学习应用程序的成功在很大程度上取决于基础培训数据的质量和规模。生成的对抗网络(GAN)可以生成任意的大型数据集,但是多样性和保真度受到限制,最近通过DeNo扩散概率模型(DDPM)来解决,这些模型(DDPM)已在自然图像上证明了其优势。在这项研究中,我们提出了Medfusion,这是一种用于医学图像的条件潜在DDPM。我们将基于DDPM的模型与基于GAN的模型进行比较,该模型构成了医疗领域中最新的最新模型。对培训的培训并与(i)stylegan-3上的n = 101,4442张图像进行了比较具有和不具有微卫星稳定性的图像。在AIROG,CRMC和CHEXPERT数据集中,MedFusion的实现(=更好)的FID(11.63对20.43、30.03对49.26,而17.28,对84.31)。同样,在所有三个数据集中,保真度(精度)和多样性(召回)较高(=更好)。我们的研究表明,DDPM是医疗领域中图像合成的甘甘的优越选择。

The success of Deep Learning applications critically depends on the quality and scale of the underlying training data. Generative adversarial networks (GANs) can generate arbitrary large datasets, but diversity and fidelity are limited, which has recently been addressed by denoising diffusion probabilistic models (DDPMs) whose superiority has been demonstrated on natural images. In this study, we propose Medfusion, a conditional latent DDPM for medical images. We compare our DDPM-based model against GAN-based models, which constitute the current state-of-the-art in the medical domain. Medfusion was trained and compared with (i) StyleGan-3 on n=101,442 images from the AIROGS challenge dataset to generate fundoscopies with and without glaucoma, (ii) ProGAN on n=191,027 from the CheXpert dataset to generate radiographs with and without cardiomegaly and (iii) wGAN on n=19,557 images from the CRCMS dataset to generate histopathological images with and without microsatellite stability. In the AIROGS, CRMCS, and CheXpert datasets, Medfusion achieved lower (=better) FID than the GANs (11.63 versus 20.43, 30.03 versus 49.26, and 17.28 versus 84.31). Also, fidelity (precision) and diversity (recall) were higher (=better) for Medfusion in all three datasets. Our study shows that DDPM are a superior alternative to GANs for image synthesis in the medical domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源