论文标题

随机区域,水平棕色运动和低纤维热内核

Stochastic areas, Horizontal Brownian Motions, and Hypoelliptic Heat Kernels

论文作者

Baudoin, Fabrice, Demni, Nizar, Wang, Jing

论文摘要

该专着致力于研究布朗尼运动的随机区域功能以及谎言基团和黎曼歧管上相关的热内核的研究。它本质上是独立的,因此可以用作有关牛皮动作理论和横向多种动作的教科书。重点放在具体的例子上,该示例使我们能够具体说明随机演算,里曼尼亚语和亚里曼尼亚人的几何形状,复杂和Quaternionic对称空间与随机矩阵之间的丰富而深厚的相互作用。

The monograph is devoted to the study of stochastic area functionals of Brownian motions and of the associated heat kernels on Lie groups and Riemannian manifolds. It is essentially self-contained and as such can serve as a textbook on the theory of Brownian motions and horizontal Brownian motions on manifolds. Emphasis is put on concrete examples which allows us to concretely illustrate the rich and deep interactions between stochastic calculus, Riemannian and sub-Riemannian geometry, the theory of complex and quaternionic symmetric spaces and random matrices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源