论文标题
部分可观测时空混沌系统的无模型预测
An Inner Product for 4D Quantum Gravity and the Chern-Simons-Kodama State
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We demonstrate that reality conditions for the Ashtekar connection imply a non-trivial measure for the inner product of gravitational states in the polarization where the Ashtekar connection is diagonal, and we express the measure as the determinant of a certain first-order differential operator. This result opens the possibility to perform a non-perturbative analysis of the quantum gravity scalar product. In this polarization, the Chern-Simons-Kodama state, which solves the constraints of quantum gravity for a certain factor ordering, and which has de Sitter space as a semiclassical limit, is perturbatively non-normalizable with respect to the naive ve inner product. Our work reopens the question of whether this state might be normalizable when the correct non-perturbative inner product and choice of integration contour are taken into account. As a first step, we perform a semi-classical treatment of the measure by evaluating it on the round three-sphere, viewed as a closed spatial slice of de Sitter. The result is a simple, albeit divergent, infinite product that might serve as a regulator for a more complete treatment of the problem. Additionally, our results suggest deep connections between the problem of computing the norm of the CSK state in quantum gravity and computing the Chern-Simons partition function for a complex group.