论文标题

使用Dirichlet Meta模型的事后不确定性学习

Post-hoc Uncertainty Learning using a Dirichlet Meta-Model

论文作者

Shen, Maohao, Bu, Yuheng, Sattigeri, Prasanna, Ghosh, Soumya, Das, Subhro, Wornell, Gregory

论文摘要

众所周知,直接使用输出标签分布来产生不确定性度量时,神经网络的问题是过度自信。现有方法主要是通过重新验证整个模型以强加不确定性定量能力来解决此问题,以便学习模型可以同时实现准确性和不确定性预测的所需绩效。但是,从头开始训练模型在计算上是昂贵的,并且在许多情况下可能不可行。在这项工作中,我们考虑了一个更实用的事后不确定性学习设置,其中给出了训练有素的基础模型,我们将重点放在培训第二阶段的不确定性量化任务上。我们提出了一种新型的贝叶斯元模型,以增强具有更好的不确定性定量能力的预训练模型,这是有效且在计算上有效的。我们提出的方法不需要其他培训数据,并且足够灵活,可以量化不同的不确定性并轻松适应不同的应用程序设置,包括室外数据检测,错误分类检测和值得信赖的转移学习。我们证明了我们所提出的元模型方法的灵活性和在这些应用程序上的卓越经验性能,而不是多个代表性的图像分类基准。

It is known that neural networks have the problem of being over-confident when directly using the output label distribution to generate uncertainty measures. Existing methods mainly resolve this issue by retraining the entire model to impose the uncertainty quantification capability so that the learned model can achieve desired performance in accuracy and uncertainty prediction simultaneously. However, training the model from scratch is computationally expensive and may not be feasible in many situations. In this work, we consider a more practical post-hoc uncertainty learning setting, where a well-trained base model is given, and we focus on the uncertainty quantification task at the second stage of training. We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities, which is effective and computationally efficient. Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties and easily adapt to different application settings, including out-of-domain data detection, misclassification detection, and trustworthy transfer learning. We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications over multiple representative image classification benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源