论文标题

Contrafeat:与语义发现的深层特征对比

ContraFeat: Contrasting Deep Features for Semantic Discovery

论文作者

Zhu, Xinqi, Xu, Chang, Tao, Dacheng

论文摘要

由于其多层中级潜在变量的特殊设计,Stylegan的语义控制具有强大的潜力。但是,有关StyleGAN的现有语义发现方法依赖于修改后的潜在层的手动选择来获得令人满意的操作结果,这是乏味和苛刻的。在本文中,我们提出了一个自动化此过程并实现最新语义发现性能的模型。该模型由具有注意力的导航器模块组成,并损失与深度功能的变化对比。我们提出了两个模型变体,其中一个以二进制方式进行了对比样品,另一个将样品与学习的原型变化模式进行了对比。根据我们的假设,这些特征可以隐式揭示所需的语义结构,包括一致性和正交性,以验证的深层特征定义了所提出的损失。此外,我们设计了两个指标,以定量评估FFHQ数据集上语义发现方法的性能,还表明可以通过简单的训练过程得出分离的表示形式。在实验上,我们的模型可以在不依赖潜在的手动选择的情况下获得最新的语义发现结果,并且这些发现的语义可用于操纵现实世界图像。

StyleGAN has shown strong potential for disentangled semantic control, thanks to its special design of multi-layer intermediate latent variables. However, existing semantic discovery methods on StyleGAN rely on manual selection of modified latent layers to obtain satisfactory manipulation results, which is tedious and demanding. In this paper, we propose a model that automates this process and achieves state-of-the-art semantic discovery performance. The model consists of an attention-equipped navigator module and losses contrasting deep-feature changes. We propose two model variants, with one contrasting samples in a binary manner, and another one contrasting samples with learned prototype variation patterns. The proposed losses are defined with pretrained deep features, based on our assumption that the features can implicitly reveal the desired semantic structure including consistency and orthogonality. Additionally, we design two metrics to quantitatively evaluate the performance of semantic discovery methods on FFHQ dataset, and also show that disentangled representations can be derived via a simple training process. Experimentally, our models can obtain state-of-the-art semantic discovery results without relying on latent layer-wise manual selection, and these discovered semantics can be used to manipulate real-world images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源