论文标题

强大的多武器跟踪在干扰环境中:通信方法

Robust Multitarget Tracking in Interference Environments: A Message-Passing Approach

论文作者

Bai, Xianglong, Lan, Hua, Wang, Zengfu, Pan, Quan, Hao, Yuhang, Li, Can

论文摘要

干扰环境中的多静脉跟踪遭受了不均匀,未知和随时间变化的混乱,导致了急剧的性能恶化。我们通过提出一种强大的多白道跟踪算法来应对这一挑战,该算法通过消息通话(MP)方法同时估算混乱状态并同时估算目标。我们使用有限的混合模型定义了非均匀的混乱,该模型包含均匀的成分和多个不均匀的组件。测得的信号强度用于估计目标的平均信噪比(SNR)和混乱的平均混乱比率(CNR),然后用作目标和杂物的其他特征信息,以提高目标歧视目标的性能。我们还提出了一个混合数据关联,该关联可以推理目标,混乱和测量之间的对应关系。然后,使用统一的MP算法来推断目标,混乱和数据关联的边际后验概率分布,通过将关节概率分布分解为平均场近似部分和信念传播部分。结果,可以获得后验概率分布的闭环迭代优化,该优化可以有效地处理目标跟踪,混乱估计和数据关联之间的耦合。仿真结果证明了与概率假设密度(PHD)滤波器和红枢宝(CPHD)滤波器相比,所提出的多坐标跟踪算法的性能优势和鲁棒性。

Multitarget tracking in the interference environments suffers from the nonuniform, unknown and time-varying clutter, resulting in dramatic performance deterioration. We address this challenge by proposing a robust multitarget tracking algorithm, which estimates the states of clutter and targets simultaneously by the message-passing (MP) approach. We define the non-homogeneous clutter with a finite mixture model containing a uniform component and multiple nonuniform components. The measured signal strength is utilized to estimate the mean signal-to-noise ratio (SNR) of targets and the mean clutter-to-noise ratio (CNR) of clutter, which are then used as additional feature information of targets and clutter to improve the performance of discrimination of targets from clutter. We also present a hybrid data association which can reason over correspondence between targets, clutter, and measurements. Then, a unified MP algorithm is used to infer the marginal posterior probability distributions of targets, clutter, and data association by splitting the joint probability distribution into a mean-field approximate part and a belief propagation part. As a result, a closed-loop iterative optimization of the posterior probability distribution can be obtained, which can effectively deal with the coupling between target tracking, clutter estimation and data association. Simulation results demonstrate the performance superiority and robustness of the proposed multitarget tracking algorithm compared with the probability hypothesis density (PHD) filter and the cardinalized PHD (CPHD) filter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源