论文标题
通过多任务辅助校正不确定的面部表达识别
Uncertain Facial Expression Recognition via Multi-task Assisted Correction
论文作者
论文摘要
面部表达识别的深层模型通过对大型标记数据进行训练来实现高性能。但是,公开可用的数据集包含不确定的面部表情是由含糊不清的注释或令人困惑的情绪引起的,这可能会严重降低稳健性。先前的研究通常遵循一般任务中的偏见消除方法,而没有从不同的相应来源的角度考虑不确定性问题。在本文中,我们提出了一种新型的多任务辅助校正方法,以解决不确定的面部表达识别,称为MTAC。具体而言,应用置信估计块和加权正则化模块,以突出显示实心样品并抑制每批不确定的样品。此外,引入了两项辅助任务,即动作单元检测和价值测量,以分别基于离散情绪和持续情绪之间的潜在依赖关系来从数据驱动的AU图中学习语义分布,并减轻类别不平衡。此外,由特征级相似性约束指导的重新标记策略进一步生成了确定的不确定样本以促进模型学习的新标签。所提出的方法可以以完全监督或弱监督的方式灵活地与现有框架相结合。关于RAF-DB,AffectNet和AFFWILD2数据集的实验表明,MTAC在面对合成和实际不确定性时对基准进行了实质性改进,并且表现优于先进的方法。
Deep models for facial expression recognition achieve high performance by training on large-scale labeled data. However, publicly available datasets contain uncertain facial expressions caused by ambiguous annotations or confusing emotions, which could severely decline the robustness. Previous studies usually follow the bias elimination method in general tasks without considering the uncertainty problem from the perspective of different corresponding sources. In this paper, we propose a novel method of multi-task assisted correction in addressing uncertain facial expression recognition called MTAC. Specifically, a confidence estimation block and a weighted regularization module are applied to highlight solid samples and suppress uncertain samples in every batch. In addition, two auxiliary tasks, i.e., action unit detection and valence-arousal measurement, are introduced to learn semantic distributions from a data-driven AU graph and mitigate category imbalance based on latent dependencies between discrete and continuous emotions, respectively. Moreover, a re-labeling strategy guided by feature-level similarity constraint further generates new labels for identified uncertain samples to promote model learning. The proposed method can flexibly combine with existing frameworks in a fully-supervised or weakly-supervised manner. Experiments on RAF-DB, AffectNet, and AffWild2 datasets demonstrate that the MTAC obtains substantial improvements over baselines when facing synthetic and real uncertainties and outperforms the state-of-the-art methods.